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Spoken language understanding (SLU) has been addressed as a supervised learning problem, where a set

of training data is available for each domain. However, annotating data for a new domain can be both fi-

nancially costly and non-scalable. One existing approach solves the problem by conducting multi-domain

learning where parameters are shared for joint training across domains, which is domain-agnostic and task-

agnostic. In the article, we propose to improve the parameterization of this method by using domain-specific

and task-specific model parameters for fine-grained knowledge representation and transfer. Experiments on

five domains show that our model is more effective for multi-domain SLU and obtain the best results. In ad-

dition, we show its transferability when adapting to a new domain with little data, outperforming the prior

best model by 12.4%. Finally, we explore the strong pre-trained model in our framework and find that the con-

tributions from our framework do not fully overlap with contextualized word representations (RoBERTa).
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1 INTRODUCTION

Spoken language understanding (SLU) [48] plays an important role in task-oriented dialog
systems. It consists of two typical subtasks, including intent detection and slot filling [40]. For ex-
ample, in Figure 1, given an input utterance “I want to watch action movie,” the outputs consist of an
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Fig. 1. An example with intent and slot annotation (BIO format).

overall intent class label (i.e., WatchMovie) and a slot label sequence (i.e., O, O, O, O, B-movie-type,
I-movie-type). In particular, the former is a classification task, and the latter can be addressed
using sequence labeling. Since slots highly depend on the intent information, dominant SLU sys-
tems in the literature [3, 4, 17, 21, 27, 43] adopt joint models for the two tasks, we follow this line
of work by jointly solving intent detection and slot filling.
Intuitively, there exists a wide range of business domains (e.g., watch movie, book ticket) with

shared and specific characteristics, and it can be infeasible to train a model for each domain.
In practice, a dialogue model should handle multiple domains. To this end, some existing work
has endeavored towards using resources from all domains to train a model [9, 13]. As shown in
Figure 2(a), Kim et al. [13] build a model by combining labeled data from different domains for
jointly training intent detection and slot filling. Their models use the same set of model parame-
ters for representing both cross-domain and cross-task information. While this can be useful for
feature integration, the method is domain-agnostic and task-agnostic: (1) domain-agnostic: One set
of shared parameters cannot effectively distinguish the domain-shared and domain-specific fea-
tures, which limits their performance. (2) task-agnostic: The method represents knowledge for the
sentence-level intent detection task and token-level slot-filling task equally by using a unified net-
work, and therefore does not offer fine-grained channels for learning task-specific knowledge. Take
the sub-sentence “watch action movie” for example, the shared and domain-specific knowledge on
the words “watch” and “action movie” is subtle, because “action movie” is domain-specific while
“watch” can be shared with other domains [45]. Therefore, domain-specific tokens should be rep-
resented with more knowledge from a specific domain, while domain shared tokens should keep
shared characteristics across domains. Unfortunately, solely relying on a unified framework can-
not achieve the fine-trained domain knowledge representation and transfer, which greatly limits
its transferability when a new domain with little data is given.
To this end, we propose a domain-aware and task-aware model (i.e., multi-level shared-private

framework) for multi-domain joint intent detection and slot filling, which is shown in Figure 2(b).
To solve the domain-agnostic issue, we first propose to use a standard shared-private framework
[20] as a foundation, which consists of a domain-shared module for representing common knowl-
edge across domains and a domain-specific module for explicitly extracting specific features for
each domain. In addition, utterances from different domains have different sentence syntactic pat-
terns, which helps the model to capture domain-aware features. Thus, we explore the domain-
aware syntax information and we empirically find modeling syntax information can substantially
improve multi-domain SLU.
To address the task-agnostic issue, we extend the vanilla shared-private framework to a multi-

level structure, achieving the fine-grained domain knowledge transfer: (1) sentence-level domain
knowledge transfer is achieved by using a sentence-level shared-private architecture for modeling
intents; (2) token-level domain knowledge transfer is achieved by using a token-level shared-private
mechanism for modeling slots. Besides, a slot filter is applied to each token to selectively decide
which tokens receive private representation in addition to a domain-shared representation. A slot
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Fig. 2. Methods for multi-domain spoken language understanding. (a) Prior work trains a single model on

a mixed dataset. (b) Our proposed domain-aware and task-aware model. Dashed line denotes information

flow to slot filling, and solid line denotes information flow to intent detection. Blue color represents Domain-

specific Module, and gray color denotes Domain-shared Module. Better viewed in color.

controller is further introduced to control the weights between domain-shared and private token
representations, achieving the fine-grained combination of domain knowledge.
We conduct experiments on two benchmarks, MTOD [35] and ASMixed [1, 4], including five

different domains in total. Experiments show that our method achieves state-of-the-art results,
with a 91.27% sentence accuracy on the MTOD dataset, outperforming the prior best result by
1.81%. On the ASMixed dataset, we achieve 84.81% sentence accuracy, outperforming the prior
best result by 3.33%. Besides, given a new domain with little labeled data, our framework can
effectively transfer knowledge from source training domains, thereby outperforming the existing
best model by 12.4%.
Finally, Pre-trained models (PLMs) have achieved surprising results across almost all NLP tasks.

A natural question is raised whether our framework can still obtain improvement over the pre-
trained model. To answer this question, we explore the pre-trained model (RoBERTa) [22] in our
framework and find that our framework works orthogonally with pre-trained model.
In summary, the contributions of our work can be concluded as follows:

• Wepropose a domain-specific and task-specific parameterizemethod (i.e., multi-level shared-
private framework) for multi-domain SLU, the structure of which is domain-aware and task-
aware, which greatly improves the transferability across domains.
• We propose a token-level shared-private mechanism, which enables the model to achieve a
fine-grained domain knowledge fusion for slot filling. To the best of our knowledge, this is
the first attempt to consider the fine-grained knowledge transfer for multi-domain SLU.
• Experiments on two benchmarks show that our framework obtains substantial improvement
over existing multi-domain SLU methods and achieves state-of-the-art performance.
• We explore and analyze the effect of incorporating pre-trained model (RoBERTa) in multi-
domain SLU tasks and empirically show that the contributions from our framework do not
fully overlap with contextualized word representations.

2 TASK DEFINITION

Intent Detection: Given input utterance X = (x1, . . . ,xn ) (n denotes the length of X ), intent
detection (ID) can be considered as a sentence classification task to decide the intent label oI ,
which is formulated as:

oI = Intent-Detection(X ). (1)
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Fig. 3. Overview of our proposed framework. It consists of a shared-private syntax-aware encoder, a slot

filter, a slot controller, and two decoders. The gray color represents general features across all domains, and

the blue color denotes domain-specific features. For simplicity, we only draw the shared encoder and the

encoder of the dth domain in the figure. Better viewed in color.

Slot Filling: Slot filling (SF) can be seen as a sequence labeling task to produce a sequence slots
oS = (oS1 , . . . ,o

S
n ), which can be written as:

oS = Slot-Filling(X ). (2)

Joint Model: Joint model denotes that a joint model predicts the slots sequence and intent si-
multaneously, which has the advantage of capturing shared knowledge across related tasks, using:

(oI ,oS ) = Joint-Model(X ). (3)

Multi-domain Learning. Suppose that there is a set of domains D =
{
d1,d2, . . . ,d |D |

}
and a

dataset with m data instances T = {t1, t2, . . . , tm }. For each t in T , we have t = (X , oS ,oI ,d ),
where X represents utterance, oS represents target slots, oI represents target intent, and d repre-
sents the domain of this data, respectively. The goal is to train a joint model on multiple source
domains, which can be used for each domain.

3 APPROACH

The overall structure of our multi-level shared-private framework is shown in Figure 3. First, the
model consists of a shared-private syntactic encoder, which is used for generating domain-shared
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and domain-specific features. Second, the sentence-level shared and private features are combined
for intent detection directly. Third, a token-level shared-private framework is used on top of the
sentence-level representations, which includes a two-stage decoder and for making fine-grained
knowledge transfer for slot filling.

3.1 Shared-private Syntactic Encoder

As shown in Figure 3, a shared syntax-aware encoder is used to capture domain-shared features.
Each instance is passed into the shared encoder and its corresponding private encoder to obtain
the representation.

Self-attentive Sentence Representation. Following Qin et al. [27], we first use a basic self-attentive
encoder to obtain self-attentive representation, which includes a bidirectional LSTM (BiLSTM)

[11] to obtain the temporal information within words and a self-attention mechanism to capture
the contextual information. Given an n-word sentenceX = (x1,x2, . . . ,xn ), we first use the BiLSTM
to read it forwardly from x1 to xn and backwardly from xn to x1 to produce a series of context-
sensitive hidden states H = {h1,h2, . . . ,hn }, which can be denoted as:

−→
hi =

−−−−→
LSTM(ϕemb (xi ),

−−−→
hi−1), i ∈ [1,n] ,

←−
hi =

←−−−−
LSTM(ϕemb (xi ),

←−−−
hi+1), i ∈ [n, 1] ,

hi = [
−→
hi ,
←−
hi ],

(4)

where ϕemb (·) denotes the embedding function.
Self-attention is a very effective method of leveraging context-aware features over variable-

length sequences for natural language processing tasks [53]. Therefore, we also apply self-
attention over word embedding to capture context-aware features. We adopt a Transformer en-
coder [41], which maps the matrix of input vectors X = {ϕemb (x1), . . . ,ϕ

emb (xn )} ∈ Rn×d (ϕemb

represents embedding mapping matrix) to queries (Q), keys (K), and values (V ) matrices by using
different linear projections and outputC ∈ RT×d is a weighted sum of values:

C = softmax

(
QK�√
dk

)
V , (5)

where dk denotes the dimension of keys. We concatenate these two representations as the self-
attentive encoding representation:

E = H ⊕ C, (6)

where E = (e1,e2, . . . ,en ) ∈ Rn×2d and ⊕ is concatenation operation.

Graph Convolution over Dependency Trees. Syntax information is an important source of features
across domains. We use a GCN [15] over the dependency tree of a sentence1 to exploit syntactic
information. Given a graph with k nodes, an adjacency matrix A ∈ Rk×k is used to represent the
graph, whereAi j = 1 if there is an edge going from node i to node j. We denote the lth layer output

for node i as д(l )
i , where д(0)

i represents the initial state of node i .

Following Zhang et al. [49, 52], we setG (0) = E. Given the dependency tree of the input sentence,
the graph convolution operated on the node representation can be written as:

д(l )
i = σ ��

�

n∑
j=1

Ãi jW
(l )д(l−1)

j + b (l )��
�
, (7)

1We use Stanford CoreNLP [24] to generate the dependency tree.
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where the layer l ∈ [1, 2, . . . ,L], ˜A = A+ I and I is a n ×n identity matrix to consider information

itself,W (l ) is a linear transformation, b (l ) is a bias term, and σ is a nonlinear function. д(L)
i is the

final state of node i .
For shared-private modeling, we allocate a set of parameters Θ shared across all domains, and

a set of private parameter Θ
p

d
for each domain, d ∈ {1, . . . , |D |}. Thus, the total set of model pa-

rameters is Θ
⋃

Θ
p
1 , . . . ,Θ

p

D
. For testing, given an input utterance, we use Θs to calculate a shared

representationGs , and Θ
p

d
that corresponds to the input domain to calculate a private representa-

tionGp .

3.2 Domain-aware Sentence-level Transfer for Intent Detection

We use a standard sentence-level shared-private structure [20, 46] over the input utterance for
knowledge transfer concerning intent detection.

Domain Shared-private Feature Fusion. After obtaining the domain-shared and domain-specific
encoding representationGs , Gp , we use self-attention [4, 54] to aggregate relevant context repre-
sentation for intent detection:

as =W sGs + bs , (8)

ps = softmax (as ) . (9)

The shared context representation cs is computed as the sum of each element дsi , weighted by
the corresponding normalized self-attention score psi :

cs =
∑
i

psiд
s
i . (10)

We similarly compute the local self-attention context cp .
cs and cp are combined by concatenation:

cm = [cs ,cp], (11)

deriving a mixed syntax-aware encoding feature cm .

Intent Prediction. The mixed encoding vector cm is used as input for intent detection:

yI = softmax
(
W I

hc
m
)
, (12)

oI = argmax(yI ), (13)

where yI is the output intent distribution; oI represents the intent label, and W I
h are trainable

parameters of the model.

3.3 Task-aware Token-level Transfer for Slot Filling

A token-level shared-private network is used to model the task-aware token-level transfer for slot
filling. Specially, we use a two-stage decoder to consider task characteristics for slot filling, building
on top of the shared-private encoder as shown in Figure 3. The first stage uses a filter to mask out
those domain-general tokens, which do not need domain-specific features,2 to allow our model to
focus on knowledge transfer for more inferable tokens. The second stage makes use of a controller
module to achieve fine-grained knowledge transfer by automatically calculating the weights for
domain-shared and domain-specific features at the token-level.

2We treat non-slot labels as domain-general (e.g., slots that are tagged O).
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Slot Filter. We adopt a simple feedforward network as our filter.Gs andGp are concatenated as
input to the filter module:

F = sigmoid
(
W f [G

s ;Gp] + bf
)
, (14)

whereW f are trainable parameters, and we define the label F = ( f1, . . . , fn ) as the probability
of domain-general tokens. Correspondingly, (1 − F ) = (1 − f1), . . . , (1 − fn ) is the probability of
domain-specific tokens.
We use the output of the filter module onGp , where

u
p
i = (1 − fi ) · дpi . (15)

The resulting vectorsU p = {up1 , . . . ,upn } represent domain-specific features.
Given U p , we use a controller to generate weights on domain-shared and domain-specific fea-

tures at the token-level, making a fine-grained fusion between the domain-shared and private
features at the token-level.

Slot Controller. We concatenate Gs , Gp and use a simple feedforward network to calculate
weights at each token, which can be written as follows:

P = sigmoid
(
W c [G

s ;Gp] + bc
)
. (16)

The weights P = {p1, . . . ,pn } produced by the controller module are used to fuse domain-shared
and domain-specific features

u
f
i = pi · upi + (1 − pi ) · дsi , (17)

where u
f
i is the fused representation at ith token.

Slot Prediction. We use a unidirectional LSTM as the slot-filling decoder. Following Li et al. [17]
and Qin et al. [27], we adopt intent information to guide the slot prediction. At the ith decoding

step, the decoder state hSi can be formalized as:

hSi = LSTM
(
hSi−1,ySi−1,y

I ⊕ uf
i

)
, (18)

where hSi−1 is the previous decoder state; ySi−1 is the previous emitted slot label distribution, and

yI is embedding of intent.

Finally, hSi is used for slot prediction:

ySi = softmax
(
W S

hh
S
i

)
, (19)

oSi = argmax(ySi ), (20)

where oSi is the slot label of the ith word in the utterance.

3.4 Joint Training

We adopt a joint model to consider the two tasks and update parameters in a joint optimization. A
cross-entropy loss is used for intent detection:

L1 � −
m∑
j=1

ŷ j, I log
(
y j, I
)
. (21)

Similarly, the slot-filling objective is:

L2 � −
m∑
j=1

nj∑
i=1

ŷ j,S
i log

(
y j,S
i

)
, (22)
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Table 1. Statistics of Datasets

Dataset Domains Train Dev Test

MTOD Reminder, Weather, Alarm 30,521 4,181 8,621

ASMixed ATIS, SNIPS 17,562 1,200 1,593

where ŷI
j and ŷSi are the gold intent label and gold slot label, respectively; m is the number of

training data and nj is the number of tokens in jth data.
In addition, to further strengthen the filter, we add an auxiliary loss to train the filter as a clas-

sification task. The loss function can be denoted as:

L3 � −
m∑
j=1

nj∑
i=1

ŷ j,Fi log
(
f ji
)
+
(
1 − ŷ j,Fi

)
log
(
1 − f ji

)
, (23)

where ŷ j,Fi is the gold representation of filter. The final joint objective is formulated as:

Lθ = α1L1 + α2L2 + α3L3, (24)

where α1, α2 and α3 are hyper-parameters.

4 EXPERIMENTS

4.1 Datasets

We conduct experiments on the benchmark MTOD [35].3 The dataset contains three domains,
including Alarm, Reminder, Weather domain. We follow the same format and partition as in
Reference [35]. To verify the generalization of the proposed model, we construct another multi-
domain SLU dataset (ASMixed) by mixing the ATIS [10] and SNIPS [1] dataset and keeping the
train/dev/test partition unchanged. The detailed statistics of the two datasets are shown in Table 1.

4.2 Experimental Settings

The dimensionalities of the embeddings are 64 and of the LSTM hidden units are 256. The dropout
ratio is 0.4 and the batch size is 16. The learning rate is 0.001. The GCN layer number is 3 for MTOD
and 2 for ASMixed. In the framework, we use Adam [14] to optimize the model parameters and
adopt the suggested hyper-parameters.
All experiments are conducted using GeForce RTX 2080Ti GPU. The epoch number is 100 for

two datasets, and we do not adopt early stopping strategy. For all experiments, we pick the model
that works best on development set and then evaluate it on test set.
Similar to One-Net [13], we assume that the input is one utterance without the need to know

which domain it comes from. During the test period, we adopt a syntax-aware encoder, which is
the same as the shared syntax-aware encoder shown in Figure 3, to directly predict the domain of
a given utterance. The result is 99.9% in MTOD dataset and 99.7% in ASMixed dataset. The domain
classification is very high due to the explicit features in spoken language utterances, which is
consistent with the observation of Gupta et al. [7].

4.3 Baselines

We compare our model with several existing state-of-the-art multi-domain SLU baselines
including:

3The reason why we do not adopt multiwoz is that multiwoz is mainly proposed to evaluate the dialog state tracking task

rather than the spoken language understanding, which makes it hard for us to directly use it as a benchmark for evaluating

the multi-domain SLU task.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 21, No. 4, Article 77. Publication date: January 2022.



Multi-domain SLU Using Domain- and Task-aware Parameterization 77:9

Table 2. Main Results

MTOD ASMixed

Model Overall Exact Slot Intent
Reminder

Exact

Alarm

Exact

Weather

Exact
Overall Exact Slot Intent

ATIS

Exact

SNIPS

Exact

Shared-LSTM [9] 88.71 94.87 98.70 82.06 90.19 90.99 76.71 92.55 94.41 81.69 70.41
Separated-LSTM [9] 89.73 94.89 99.01 84.59 89.81 92.18 79.53 92.94 94.79 80.96 77.71
Multi-Domain adv [19] 88.82 94.41 98.87 82.09 88.86 92.05 79.47 91.80 96.48 82.75 75.29
One-Net [13] 89.36 95.25 98.56 83.27 90.15 91.83 78.28 93.38 93.72 81.85 73.80
Locale-agnostic-Universal [16] 88.54 94.16 99.12 81.63 89.58 91.21 79.35 92.10 96.48 82.19 75.71
Coach [23] 89.46 95.13 98.38 83.02 90.69 91.78 81.48 92.87 96.86 82.49 80.20

Ours Framework 91.27* 95.69* 99.20* 85.62* 92.37* 93.29* 84.81* 94.30* 97.30* 86.53* 82.62*

Overall Exact, Slot, and Intent Denote the Corresponding Metrics on Whole Datasets, and Domain Exact Represents the

Exact Accuracy on Each Domain Separately. The numbers with * indicate that the improvement of our framework

overall baselines is statistically significant with p < 0.05 under t-test.

(1) Shared-LSTM Hakkani-Tür et al. [9] trained a single model for intent detection and slot
filling using data from all the domains, which has advantage of incorporating domain-shared
knowledge.

(2) Separated-LSTM. Hakkani-Tür et al. [9] proposed a single-domain joint model for slot filling
and intent detection, which can capture domain-specific features for each domain.

(3) Multi-Domain Adv. Liu and Lane [19] applied an adversarial training method for slot filling.
For a fair comparison, we add an intent detection module and train the two tasks jointly.

(4) One-Net. Kim et al. [13] used data-combined for joint slot filling and intent detection, which
is another parameter-shared method to incorporate domain-shared features.

(5) Locale-agnostic-Universal. Lee et al. [16] proposed a locale-agnostic universal domain
classification model based on multi-task learning.

(6) Coach. Liu et al. [23] proposed a coarse-to-fine approach (Coach) for cross-domain slot fill-
ing. Besides, slot descriptions are used in the fine stage to help recognize unseen slots, and
template regularization is applied to further improve the slot filling performance of similar
or the same slot types. This approach achieves the state-of-the-art performance. For a fair
comparison, we add the intent detection upon coach model for joint SLU task.

4.4 Overall Results

Following prior work [4, 27], we evaluate the performance of slot filling using F1 score, intent
prediction using accuracy, and sentence-level semantic frame parsing using the exact accuracy,
measuring the ratio of sentences for which both intent and slot are predicted correctly in a
sentence.
Table 2 shows the results of the proposed models on two datasets. We can observe that:

• Locale-agnostic-Universal achieves the best performances on intent detection among
all baselines, which indicates that explicitly modeling domain-shared and domain-specific is
more effective than implicitly capturing shared knowledge with sharing parameters.
• Our model significantly outperforms all the baselines by a large margin and achieves state-
of-the-art performance. In particular, on the ASMixed dataset, compared with the best prior
joint work Coach, we achieve 1.43% improvement on slot-filling task. On the MTOD dataset,
the same trend has been witnessed. This indicates the effectiveness of our task-aware token-
level shared-private framework, which can effectively transfer fine-grained knowledge for
each domain.
• Our framework gains the largest improvements on overall exact. We attribute this to the fact
that our proposed domain-aware and task-aware framework can better help transfer domain
knowledge between the intent and slots and hence improve the SLU performance.
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Table 3. Ablation Experiments on ASMixed

Model Overall Exact Slot Intent ATIS Exact SNIPS Exact

Full Model 84.81 94.30 97.30 86.53 82.62

w/o Multi-level Shared-private Architecture 82.93 93.52 97.24 84.96 80.34
w/o Sentence-level Shared-private Architecture 82.74 93.25 96.92 83.95 81.20
w/o Filter & Controller 82.23 93.28 97.05 83.61 80.48
w/o GCN 83.82 93.82 96.99 85.52 81.62

w/ Oracle 87.26 94.93 96.92 86.76 87.79

4.5 Analysis

More thorough studies and analysis are conducted on ASMixed in this section, trying to answer
the following questions:

(1) Does the domain- and task-aware multi-level shared-private module benefit multi-domain
SLU?

(2) Does the domain-aware sentence-level shared-private module benefit multi-domain SLU?
(3) Does the task-aware two-stage decoder successfully transfer fine-grained knowledge for

token-level slot filling across all domains?
(4) Can domain-aware syntactic information better generalize across domains in SLU tasks?
(5) Can our framework effectively transfer knowledge for a new domain with little labeled data?
(6) Does our framework successfully capture domain-shared and domain-specific features?
(7) Does our framework still work upon pre-trained model?

4.5.1 Effectiveness of Domain- and Task-aware Multi-level Shared-private Framework. To verify
the effectiveness of the proposed domain- and task-aware multi-level shared-private architecture,
we conduct a set of experiments where the private syntax-aware encoder is removed. This means
that the ablated framework cannot access to domain-specific features. To see the effectiveness of
this module fairly, we keep the two-stage module unchanged and use a shared encoder to replace
the original private encoder. The results are shown in the w/o Multi-level Shared-private Architec-

ture row in Table 3. We observe that the ATIS Exact acc drops by 1.57% and SNIPS Exact acc drops
by 2.28% when the shared-private framework is removed. In addition, the whole exact acc drops
by 1.88%, which shows that domain-specific feature extracted by the private module is important
for multi-domain SLU, including both the sentence-level intent detection subtask and token-level
slot filling subtask.

4.5.2 Effectiveness of Domain-aware Sentence-level Shared-private Framework. To verify the ef-
fectiveness of the domain-aware sentence-level shared-private architecture, we conduct the exper-
iment where we adopt the shared context representation cs rather than the mixed shared-private
cm for intent detection and keep other components unchanged. This means that the ablated frame-
work cannot access to domain specific features only for intent detection. The results are shown in
the w/o Sentence-level Shared-private Architecture row in Table 3. We observe that the intent acc
drops by 0.38%, which indicates the sentence-level domain private feature can help intent detec-
tion. In addition, the overall exact drops by 2.07%.We attribute it to the reason that intent detection
and slot filling are the two correlated tasks where the performance of intent detection affects the
whole SLU result.

4.5.3 Effectiveness of Task-aware Token-level Shared-private Framework. To verify the effective-
ness of the task-aware token-level shared-private framework, we conduct ablation experiments
where we remove the two-stage decoder for slot filling. In this setting, we incorporate shared and
domain-specific features by summation other than using our two-stage slot-filling decoder. This
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Fig. 4. Performance (Exact Acc) of domain adaption on different subsets of the original training data on the

ASMixed dataset.

model is effectively a domain-aware version of One-Net [13], with multi-tasking between intent
classification and slot filling only through parameter sharing. The results are shown in the w/o

Filter & Controller row in Table 3. We can see a 2.58% and a 1.02% drop in the exact and slot-filling
metrics, respectively, which verifies the effectiveness of our proposed two-stage decoder. We at-
tribute this to the fact that our filter successfully filters the domain-general token and the model
automatically learns weights on how to combine shared and domain-specific features for each
token slot prediction.

4.5.4 Oracle Filter Performance. To see the role of our two-stage decoder intuitively, we also
present results when using oracle filter information by manually filtering out tokens that are not
domain-specific. The results are shown in the oracle row. We obtain 87.26% on overall exact, out-
performing our model over 2.45%, which demonstrates better two-stage decoder will lead to better
multi-domain SLU performance. The result verifies the effectiveness of our two-stage decoder.

4.5.5 Effectiveness of Domain-aware Syntactic Information. We remove the GCN layers and only
adopt the self-attentive encoder to verify the effectiveness of syntax information. The result is
shown in the w/o GCN row in Table 3. We can see that the performance drops significantly in all
metrics, which demonstrates the effectiveness of syntax information in multi-domain SLU tasks.
The reason is that utterances in different domains have different syntactic patterns, which helps
the model better capture the shared and domain-specific features. To our knowledge, we are the
first to show that syntactic information is useful for multi-domain SLU. It is worth noticing that
even without the GCN component, our framework still performs the state-of-the-art model [16],
which again demonstrates the effectiveness and robustness of our framework.

4.5.6 Domain Adaption. We conduct domain adaption experiments to explore the transferabil-
ity of our framework on the ASmixed dataset by simulating given a new domain with little labeled
data. We keep ATIS dataset unchanged, and the ratio of the other domain SNIPS from the orig-
inal data varies from [1%, 5%, 10%, 20%, 30%, 40%, 50%]. The results are shown in Figure 4. We
can find that our framework outperforms One-Net on all ratios of the original dataset. In partic-
ular, our framework trained with 20% training dataset can achieve comparable and even better
performance compared to One-Net with 50% training dataset on some domains. In this case, with
5% training data, our model outperforms One-Net by 12.4% on SNIPS exact. This implies that our
framework effectively transfers knowledge from other domains to achieve better performance for
the low-resources new domain.

4.5.7 Breakdown Evaluation. In this section, we further investigate why our framework is use-
ful in the few-shot setting, where we keep 5% original data as training data. Compared with
other domains, we noticed that the slot F1 of the Weather domain outperforms One-Net in the
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Table 4. The Delta of Major Slots’ F1 in Weather Domain

with 5% Training Data

Model location datetime noun attribute
One-Net 81.73 90.79 94.68 91.62
Our Framework 85.46 92.28 95.67 92.24

Δ +3.73 +1.49 +0.99 +0.62

Fig. 5. t-SNE visualization of sentences vector space from the shared encoder (a) and with each domain

private encoder (b).

significant range. We conducted a more in-depth analysis of the Weather domain. As shown in
Table 4, the slots datetime and location gained the largest improvements. We observe datetime
is a domain-shared slot, which occurs in each domain. It shows the architecture successfully trans-
fers the knowledge among different domains to enhance the performance of the model. Moreover,
we observe that location is a domain-specific slot that does not have similar slots in other do-
mains, which leads to the difficulty of the prediction of this slot in traditional models. The results
show that the shared-private network structure is useful for improving both domain-shared slots
and domain-specific slots by its token-level fine-grained knowledge transfer mechanism.

4.5.8 Visualization. To understand whether our framework successfully captures the domain-
shared and domain-specific features, we visualizeGs andGp from the full model trained onMTOD.
In particular, we put 600 sentences, which include 200 sentences from the Alarm domain, 200
sentences from the Reminder domain, and 200 sentences from Weather domain, into the shared
syntax-aware encoder. Sentences from each domain are fed into its private syntax-aware encoder
to get their sentence representations.
We use t-SNE to visualize sentence representations obtained by the shared and private encoders.

The vectors are shown in Figure 5. We can observe that those representations from the shared en-
coder tend to stay closer. In contrast, each private sentence representation from each domain tends
to occur in a cluster, and there is nearly no overlap between different domains. This demonstrates
our syntax-aware encoders capture the domain-shared and domain-specific features effectively.

4.5.9 Case Study. To better understand how our proposed task-aware two-stage decoder affects
and contributes to the final result, we conduct a case study of the slot-filling task between our
model and the baseline model One-Net.
This case is shown in Figure 6. For the word “around,” One-Net predicts its slot label as “O” incor-

rectly. The token “around” is more likely treated as a domain-general token because it usually does
not have real meaning in SLU system. The result indicates that One-Net cannot capture sufficient
domain information to predict it correctly. In contrast, our model predicts the slot label correctly.
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Fig. 6. Case study. The blue slot is correct, while the red one is wrong. Better viewed in color.

Fig. 7. Performance (Exact Acc) on two datasets between our frameworkwith the SOTA single-domainmodel

(stack-propagation).

We attribute this to the fact that the proposed two-stage decoder successfully learns to capture
more domain-specific knowledge for this token, achieving the fine-grained knowledge transfer.

4.5.10 Compared with the Best Single-domain Model. To further verify the effectiveness of
our proposed method, we compare our model with the state-of-the-art single-domain model
Stack-propagation [27]. Stack-propagation is directly trained with the mixed dataset, which
can be considered as a shared model to implicitly extract domain knowledge.
From the results shown in Figure 7, we can observe that our framework outperforms Stack-

propagation on two datasets, which demonstrates that our proposed multi-level shared-private
framework makes better domain knowledge representation and transfer than the single-domain-
based model.

4.5.11 Effect of RoBERTa. We would like to investigate whether our framwork can still obtain
improvement over the pre-trainedmodel (PLMs). To answer the question, we explore the RoBERTa
[22] on our framework andwe name it as our framework + RoBERTa. More specifically, we replace
the shared Syntactic Encoder with RoBERTa-base and keep other components unchanged. In the
experimental setting, we adopt the fine-tuning mode. For generating token hidden representation,
we follow Qin et al. [27] to consider the first subword label if a word is broken into multiple
subwords. For example, if sentence “[<s>] Themovie is very interesting [</s>]” is split into “[<s>]
The movie is very inter## ##esting [</s>],” then we only adopt the representation of inter as the
whole token interesting representation.

The comparison results are shown in Figure 8, we find that our framework + RoBERTa out-
performs our model on all datasets, which indicates the effectiveness of the pre-trained model.
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Fig. 8. Performance (Exact Acc) on two datasets between our framework and our framework+RoBERTa.

We attribute this to the fact that pre-trained models can provide rich semantic features, which can
help to improve the performance onmulti-domain SLU tasks, which has the consistent observation
with Qin et al. [26].

5 RELATEDWORK

Intent Detection and Slot Filling. Intent detection and slot filling are two core subtasks of spo-
ken language understanding (SLU), which aims to identify users’ intents and to extract seman-
tic constituents from the natural language utterances [40]. Intent detection can be considered as
the sentence classification task. The classical methods, such as support vector machine (SVM)

[8] and RNN[34], have been proposed to solve intent detection. Recently, Xia et al. [43] adopts
a capsule-based neural network with self-attention for intent detection, achieving the promising
performance.
Slot filling can be regarded as a sequence labeling task. The popular approaches are conditional

random fields (CRF) [33] and recurrent neural networks (RNN) [44, 47]. Recently, Qin et al.
[27], Shen et al. [36], Tan et al. [38], and Qin et al. [28] propose the self-attention mechanism
sequential labeling, which achieves the promising performance without CRF structure.

Joint Model for SLU. Since intent and slots are closely related, dominant methods [4, 17, 27,
29, 31, 39, 42, 50, 51] in the literature adopt the joint model to consider the mutual relationship
between slot filling and intent detection. Zhang andWang [51] proposed a joint model using LSTM
for learning the correlation between intent and slots. Goo et al. [4] proposed a slot-gated model
to consider the relationship and interaction between two tasks. Li et al. [17] and Qin et al. [27]
proposed to use intent information to explicitly model the semantic correlation between slots and
intent. However, the above work is restricted to a single domain. In contrast, we consider joint
SLU in a multi-domain setting.

Multi-Domain SLU. Hakkani-Tür et al. [9] proposed a single LSTM model over a mixed multi-
domain dataset implicitly learning the domain-shared features. Kim et al. [13] adopted one network
to jointly modeling slot filling, intent detection, and domain classification. Liu et al. [23] proposed
a coarse-to-fine approach (Coach) for cross-domain slot filling. The above methods trained a sin-
gle model on the mixed dataset. Compared with their work, we propose a domain-aware and
task-aware model by extending a shared-private framework into a token-level knowledge sharing
structure. In addition, the above works do not incorporate syntax information, and we find that
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modeling the syntax information is useful for multi-domain SLU. More closely related to our work,
Lee et al. [16] used a shared-private framework for domain classification, and Liu and Lane [19]
used a shared-private framework for slot filling. These methods can be regarded as application
of the standard shared-private architecture to subproblems in SLU. In contrast to their work, we
exploit the mutual benefit between intent detection and slot filling for fine-grained knowledge
transfer. To our knowledge, we are the first to investigate shared-private framework for joint SLU
and the first to conduct the token-level selective weighing shared and private representations in
their integration.

Graph Convolutional Network. Graph convolutional networks (GCN) are neural networks
that operate directly on graph structures [15] to model the structural information, which has been
applied successfully in various NLP tasks. De Cao et al. [2] and Lin et al. [18] propose GCN to
performmulti-step reasoning on question answering task. Strubell et al. [37] andMarcheggiani and
Titov [25] utilize GCN to model the syntactic information for semantic role labeling. Huang and
Carley [12] and Zhang et al. [49] apply GCN for aspect-based sentiment classification to consider
syntactical constraints. Qin et al. [30, 32] explore the graph network to model the interaction
between the slot and multiple intents. Guo et al. [5, 6] successfully propose an attention-guided
graph convolutional network to encode the dependency trees for relation extraction. Our work
follows the above line of models. We propose to utilize the GCN to explore the graph structure to
encode the syntactic information for multi-domain SLU tasks. To the best of our knowledge, we
are the first to incorporate syntactic information with GCN for multi-domain SLU.

6 CONCLUSION

We investigated domain-aware and task-aware parameterization for multi-domain SLU by build-
ing a model with separate domain- and task-specific parameters. In particular, a domain-aware
sentence-level shared-private framework can be used for extracting domain knowledge for in-
tent detection, while a task-aware token-level shared-private framework is used to achieve a fine-
grained knowledge transfer for slot filling. Unlike existing methods, which use the same parame-
ters for multi-task learning, our model can achieve a fine-grained combination of domain knowl-
edge transfer. Experiments on two publicly available datasets with five domains show the effective-
ness of the proposed models, and we achieve state-of-the-art performance. In addition, our model
can quickly adapt to a new domain given little labeled data, which makes it more robust and scal-
able in the real-world scenario. Finally, our work is the first attempt to explore syntax information
and empirically demonstrate the effectiveness of syntax information in multi-domain SLU tasks.
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